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Hybridization: From DG to HDG Preliminaries

Model problem

Model problem: Poisson’s equation

Given f ∈ L2(Ω), find u ∈ H1(Ω), such that

−∆u = f, on Ω

u = 0, on ∂Ω

Ω

∂Ω

Assume Ω ⊂ Rd is bounded, sufficiently regular domain.

Notation:

(u, v)D :=
∫
D
u v dx ∀D ⊆ Ω

‖v‖0,D :=
√

(v, v)D, |v|1,D :=
√

(∇v,∇v)D

We will abbreviate H1(Ω) :=
[
H1(Ω)

]d
etc.
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Hybridization: From DG to HDG Preliminaries

Meshes and basic notation

Meshes: (hanging nodes also possible)

Th := {Ti }, where Ω =
⋃
Ti

∂Th := { ∂Ti }
Eh := { eij : eij = ∂Ti ∩ ∂Tj , i > j }

eij

Ti

Tj

Broken Sobolev spaces:

Hs(Th) := { v ∈ L2(Ω) : v|T ∈ Hs(T ) for all T ∈ Th }

(u, v)Th :=
∑
T∈Th

(u, v)L2(T ), ‖v‖Th := (v, v)
1/2
Th , etc.

Jump and average:

JvK := v|Ti
− v|Tj

, {v} := 1
2 (v|Ti

+ v|Tj
)

Note: functions defined on Eh can be interpreted as functions on ∂Th.
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Hybridization: From DG to HDG A simple DG method

A simple DG method

Example: Symmetric Interior Penalty Galerkin (SIPG1)

Find u ∈ Hs(Th) ∩H1
0 (Ω), s > 3/2, such that

aSIPGh (u, v) = (f, v)Th , ∀ v ∈ Hs(Th),

where we define a symmetric bilinear form

aSIPGh (u, v) :=(∇u,∇v)Th − ({∂nu}, JvK)Eh
− ({∂nv}, JuK)Eh + τ(JuK, JvK)Eh .

Here, τ := α p
2

h is a penalty parameter, with α ∈ R+.

Natural energy norm for the discrete analysis:

‖v‖1,h :=
(
‖∇v‖2Th + ‖τ1/2JvK‖2Eh

)1/2

.

1e.g. [Arnold 1982], [Rivière 2008]
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Hybridization: From DG to HDG Hybridization: HDG

Hybridized DG method

Example: Hybridized Symmetric Interior Penalty Galerkin

Find (u, û) ∈ (Hs(Th) ∩H1
0 (Ω))× L2(Eh), s > 3/2, such that

ah(u, û; v, v̂) = (f, v)Th , ∀ (v, v̂) ∈ Hs(Th)× L2(Eh),

where û := {u} and v̂ := {v}. We define a symmetric bilinear form

ah(u, û; v, v̂) :=(∇u,∇v)Th − (∂nu, v − v̂)∂Th
− (∂nv, u− û)∂Th + τ(u− û, v − v̂)∂Th .

Here, τ := α p
2

h is a penalty parameter, with α ∈ R+.

Natural energy norm for the discrete analysis:

‖(v, v̂)‖1,h :=
(
‖∇v‖2Th + ‖τ1/2(v − v̂)‖2∂Th

)1/2

.
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Hybridization: From DG to HDG Hybridization: HDG

Hybridization: From DG to HDG (4/4)

Given a triangulation Th, define finite dimensional spaces Vh and V̂h:

Vh := { v ∈ H1(Th) : v|T ∈ Pp(T ), ∀T ∈ Th }
V̂h := { v̂ ∈ L2(Eh) : v|E ∈ Pp(E), ∀E ∈ Eh, v̂ = 0 on ∂Ω }

Discrete problem: Find (uh, ûh) ∈ Vh × V̂h such that

ah(uh, ûh; vh, v̂h) = (f, vh)Ω, ∀(vh, v̂h) ∈ Vh × V̂h.

Stability analysis: For any α > α0, there holds2

ah(vh, v̂h; vh, v̂h) ≥ 1
2‖(vh, v̂h)‖21,h, ∀(vh, v̂h) ∈ Vh × V̂h,

where α0 depends on the element shape. One can choose α ’large enough’ (e.g.
α = 10) or explicitly compute α0|T on d-simplices and d-hypercubes.

2e.g. [Egger 2008]
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Hybridization: From DG to HDG Hybridization: HDG

Some remarks

The hybridized method is consistent by construction!

Standard error analysis yields optimal error estimates.

Stability is independent of the particular choice of V̂h.

More general boundary conditions are possible.

Other problems were also investigated, e.g.

Convection-diffusion [Egger and Schöberl 2009]
Stokes problem [Cockburn et. al. 2010], [Egger and W. 2010b]
Oseen problem (in preparation)

Assembly in an element-wise fashion.

Static condensation on element level.

Upwinding can be easily incorporated.

Locally varying polynomial degrees and
nonconforming h-refinements possible.

Christian Waluga (AICES) HDG Methods October 6-8, 2010 9 / 26



Hybridization: From DG to HDG Implementation in DUNE

HDG methods: Implementation (1/2)

Implementation in DUNE

Implementation uses dune-pdelab and the core modules.

Approximations in the interior of elements by monomials
(using MonomLocalFiniteElementMap)
Approximations on the element borders require some extra work:

We use the IntersectionIndexSet provided in PDELab and a self-written
FaceMonomLocalFiniteElementMap to define a grid function space on the
faces of the mesh.
Problem: The orientation of intersections may differ in two intersecting
elements.

This causes problems when mapping from intersection coordinates to
coordinates inside the element.
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Hybridization: From DG to HDG Implementation in DUNE

HDG methods (2/2)

Implementation in DUNE

The only solution we know so far is a little helper that finds the
corresponding intersection in the outside element if it has a lower index or a
higher level than the current intersection.

We then map the coordinates as follows:

if(wrongintersection)

return rightintersection->geometryInOutside().global(x);

else

return rightintersection->geometryInInside().global(x);

The big disadvantage here is that we need to instantiate a quadratic number
of intersections (performance issues?!)
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Hybridization: From DG to HDG Example: Oseen problem

Numerical example: Kovaznay (1/3)

Example: Oseen problem; Ω = (−0.5, 2)× (−0.5, 1.5) [Kovasznay 1947]

−∆u + w∇u + ∇p = 0
divu = 0

}
on Ω, u = uexact on ∂Ω

Exact solution:

u(x, y) =

(
1− exp(λx) cos(2πy)
λ
2π exp(λx) sin(2πy)

)
,

p(x, y) = − 1
2 exp(2λx) + p,

with parameters λ and p given as

λ :=
−8π2

ν−1 +
√
ν−2 + 16π2

and p = 2
∫ 3

2

− 1
2

exp(2λx) dx.
Figure: Velocity vectors (ν = 1/10)
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Hybridization: From DG to HDG Example: Oseen problem

Numerical example: Kovaznay (2/3)

level
P1 −P0

0
1
2
3
4

P2 −P1

0
1
2
3
4

P3 −P2

0
1
2
3
4

dimension L2 error energy error
K S error rate error rate

578 326 37.5126 − 229.691 −
2248 1240 12.6979 1.56 143.706 0.68
8864 4832 3.70855 1.78 80.5438 0.84

35200 19072 0.97223 1.93 41.9258 0.94
140288 75766 0.24589 1.98 21.2533 0.98

K S error rate error rate
1056 468 29.0005 − 217.573 −
4128 1776 4.34306 2.74 20.0395 3.44

16320 6912 0.63415 2.78 5.61554 1.84
64896 27264 0.08338 2.93 1.45829 1.95

258816 108288 0.01054 2.98 0.36827 1.99
K S error rate error rate

1660 610 10.7941 − 93.9881 −
6512 2312 0.97279 3.47 14.7614 2.67

25792 8992 0.07140 3.77 2.08979 2.82
102656 34456 0.00461 3.95 0.26982 2.95
409600 140800 0.00029 3.98 0.03397 2.99

Table: Kovsznay flow: Errors of the numerical solution for different inf-sup stable finite
element approximations and a sequence of uniformly refined meshes.
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Hybridization: From DG to HDG Example: Oseen problem

Numerical example: Kovaznay (3/3)

x

y

Figure: Kovasznay flow (ν = 1): Streamlines and nonconforming mesh after 4
subsequent h-refinements.
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Hybridized Mortar Methods Relation between HDG and Hybridized Mortar

Hybridized mortar method (1/2)

Similarly as for the HDG method, we can define a hybridized mortar method3:

Vh := { v ∈ H1
0 (Ωh) : v|T ∈ Pp(T ), ∀T ∈ Th }

V̂h := { v̂ ∈ L2(Γh) : v|E ∈ Pp(E), ∀E ∈ Th(Γh) }

Ω1 Ω2

Ω3 Ω4

Γ13

Γ34

partition:

Ωh := {Ω1,Ω2, . . . ,ΩN}

interfaces:

Γij := ∂Ωi ∩ ∂Ωj

Γh := {Γij}

skeleton:

Γ :=
⋃

Γij

3cf. [Egger 2008]
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Hybridized Mortar Methods Relation between HDG and Hybridized Mortar

Hybridized mortar method (2/2)

Discrete problem: Find (uh, ûh) ∈ Vh × V̂h such that

ah(uh, ûh; vh, v̂h) = (f, vh)Ω, ∀(vh, v̂h) ∈ Vh × V̂h.

where we define

ah(u, û, v, v̂) :=(∇u,∇v)Ωh
− (∂nu, v − v̂)∂Ωh

− (∂nv, u− û)∂Ωh
+ τ(u− û, v − v̂)∂Ωh

.

Important results:

No direct coupling between subdomain solutions.

’Elimination’ on subdomains leads to a Schur complement system for the
hybrid variables only (→ domain decomposition methods).

Space for the hybrid variable can be chosen with great flexibility (no
inf-sup-condition necessary for multiplier).

Hybridized mortar methods for other problems were also analyzed, e.g.
Maxwell [Hollaus et. al. 2010], Stokes [Egger and W. 2010a].

For the finest partition Ωh = Th, we recover the hybridized DG method.
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Hybridized Mortar Methods Implementation in DUNE

Hybrid mortar: Implementation

Implementation in DUNE

In many applications, there exists a parametrization for the interface (e.g.
planar, cylindrical, spherical, ...)
Idea: Lagrange multipliers live on d− 1 dimensional structured meshes that
are transformed to the physical space.
Overlaps between multiplier mesh and subdomain meshes are computed using
dune-grid-glue by C. Engwer and O. Sander.
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Hybridized Mortar Methods Example: Stokes problem

Hybrid mortar: Stokes problem

Stokes problem [Egger and W. 2010a]:

Partitioning and triangulations:

The subdomain interfaces are extracted using a Codim1Extractor

The entire OneDGrid is extracted with a Codim0Extractor

A transformation is given to place the interface grids on the coupling
boundaries.

We use the PSurface backend to generate remote intersections.
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Hybridized Mortar Methods Example: Stokes problem

Numerical example

Example: Stokes problem: Colliding flow, Ω = (−1, 1)2

−∆u + ∇p = 0
divu = 0

}
on Ω, u = uexact on ∂Ω

uexact =
(
20xy3, 5x4 − 5y4

)
, pexact = 60x2y − 20y3

Plot of analytic solution; velocity vectors and pressure field
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Hybridized Mortar Methods Example: Stokes problem

Mortar: Numerical results (1/2)

Figure: Numerical results (p=2): h: 1.00; L2-error: 1.418; energy error: 3.253
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Hybridized Mortar Methods Example: Stokes problem

Mortar: Numerical results (1/2)

Figure: Numerical results (p=2): h: 0.50; L2-error: 0.171; energy error: 0.761
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Hybridized Mortar Methods Example: Stokes problem

Mortar: Numerical results (1/2)

Figure: Numerical results (p=2): h: 0.25; L2-error: 0.021; energy error: 0.183
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Hybridized Mortar Methods Example: Stokes problem

Mortar: Numerical results (2/2)

Figure: Simple example for a diffusion problem with non-matching meshes in 3D
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Conclusion

Conclusion

Summary

Presentation of hybridized DG methods.

Implementation of HDG and hybridized mortar
methods in DUNE.

Possible applications include different interface
problems (e.g. propellers).

Known issues

HDG methods in DUNE not (yet) naturally implementable?

Future work

Implementation of parallel codes for high performance computing.

Analysis and implementation for time-dependent problems.

Use of efficient domain decomposition solvers.
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Presentation of hybridized DG methods.

Implementation of HDG and hybridized mortar
methods in DUNE.

Possible applications include different interface
problems (e.g. propellers).

Known issues

HDG methods in DUNE not (yet) naturally implementable?

Future work

Implementation of parallel codes for high performance computing.

Analysis and implementation for time-dependent problems.

Use of efficient domain decomposition solvers.

Thanks for your attention!
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