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Is Performance Really Relevant?

In the scientific commumity, scalability of algorithms is most
important. Why care for performance of the implementation?

I Computation easily takes days. Is waiting 10 days instead
of 1 relevant?

I Computation time can be compensated by more machines.
Can you spend 10 times as many computers?

I Why debug parallel code when you can still speed up the
serial one?
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Is the EntityPointer really a pointer?

The following code compiles fine but may cause segmentation
faults:

const Entity &entity = *intersection.outside ();
cout << entity.geometry (). center () << endl;

Why?

Most grid implementations create entities only on demand, i.e.,
they exist as long as the EntityPointer exists.

⇒ Copying an EntityPointer might mean copying the entity.

Martin Nolte Performance Pitfalls in the DUNE Grid Interface October 7, 2010 3 / 22



Is the EntityPointer really a pointer?

The following code compiles fine but may cause segmentation
faults:

const Entity &entity = *intersection.outside ();
cout << entity.geometry (). center () << endl;

Why?

Most grid implementations create entities only on demand, i.e.,
they exist as long as the EntityPointer exists.

⇒ Copying an EntityPointer might mean copying the entity.

Martin Nolte Performance Pitfalls in the DUNE Grid Interface October 7, 2010 3 / 22



Example 1: Safe but Slow

Let’s have a look at the following code:

const Intersection &is = *intersectionIterator;
const i n t n = is.outside()->geometry (). corners ();
f o r ( i n t i = 0; i < n; ++i )
{

cout << is.outside()->geometry (). corner( i )
<< endl;

}

In the worst case, the entity is created n + 1 times.
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Example 1: A bit Better

Let’s have a look at the following code:

const Intersection &is = *intersectionIterator;
const EntityPointer ep = is.outside ();
const i n t n = ep ->geometry (). corners ();
f o r ( i n t i = 0; i < n; ++i )

cout << ep ->geometry (). corner( i ) << endl;

Now the EntityPointer is created only once. Still, the entity
might be reinitialized with each dereferencing.
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Example 1: Better, but not Perfect

Let’s have a look at the following code:

const Intersection &is = *intersectionIterator;
const EntityPointer ep = is.outside ();
const Entity &e = *ep;
const i n t n = e.geometry (). corners ();
f o r ( i n t i = 0; i < n; ++i )

cout << e.geometry (). corner( i ) << endl;

Now, the EntityPointer and Entity are created at most
once. But what about the geometry?
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Example 1: Fast but Ugly

Let’s have a look at the following code:

const Intersection &is = *intersectionIterator;
const EntityPointer ep = is.outside ();
const Entity &e = *ep;
const Geometry &geo = e.geometry ();
const i n t n = geo.corners ();
f o r ( i n t i = 0; i < n; ++i )

cout << geo.corner( i ) << endl;

Now, EntityPointer, Entity and Geometry are created at
most once. We cannot do faster, but the code looks quite ugly
now.
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Example 1: That’s It

Let’s have a look at the following code:

const Intersection &is = *intersectionIterator;
const EntityPointer ep = is.outside ();
const Geometry &geo = ep->geometry ();
const i n t n = geo.corners ();
f o r ( i n t i = 0; i < n; ++i )

cout << geo.corner( i ) << endl;

Now, EntityPointer, Entity and Geometry are still created
at most once. We don’t need to store the entity reference.
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Avoid Using Intersection::inside

Intersection::inside creates a new EntityPointer to the inside
entity.
But the intersection is obtained through code like

f o r ( IIt iit = gridView.ibegin( e ); ... )
{

EntityPointer inside = iit ->inside ();

...
}

In this case inside is just an EntityPointer to e.
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GlobalIdSet vs. LocalIdSet

I Id sets are artificial DUNE structures to uniquely identify
an entity.

I Grid implementations associate ids each entity, if
requested (⇒ possible extra memory consumption).

I Global ids are unique over all processes (⇒ they are
communicated during load balancing).

I A local id might be something available (e.g., Element∗).

⇒ Use the GlobalIdSet only if needed. Once requested, the
grid may not delete it.
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Avoiding Strict-Aliasing Warnings

Can I use -fstrictaliasing with DUNE?

Many of these strict aliasing warnings origin from the following
situation:

vo id f ( const EntityPointer &ep );

Callling f( it ) for an iterator it will result a strict aliasing
warning in gcc 4.4 and above.

This problem can be avoided using either of following two
variants of f:

template < c l a s s G, c l a s s I >
vo id f ( const EntityPointer < G, I > &ep );

vo id f ( const Entity &e );

In the development head of DUNE (not in the 2.0 release),
such methods have been replaced by one of these variants.
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SPGrid

SPGrid is a fast implementation of a structured, parallel grid
with static load balancing (at creation time).

Features (in comparison to YaspGrid and SGrid):

SGrid YaspGrid SPGrid
supports entities of codim 0, . . . , d 0, d 0, . . . , d
can communicate on codim — 0, d 0, . . . , d
superentity iterators for codim — — 0, . . . , d
supported domains

∏
[ai , bi ]

∏
[0, bi ]

∏
[ai , bi ]

supports periodicity no no yes
supports anisotropic refinement no no yes
supported world dimensions ≥ d d d

“SGrid is slow because it implements the complete interface.”

Martin Nolte Performance Pitfalls in the DUNE Grid Interface October 7, 2010 12 / 22



Performance Issues of SPGrid

I memory consumption is independent of number of
elements

I values for jacobian, jacobianInverseTransposed,
integrationElement and volume stored only once for
each grid level

I minimal size of on-the-fly objects like Entity, Geometry,
Intersection, etc.

I all local geometries are stored on the grid

I data of Entity stored within Geometry
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Finite Volumes on a Structured Grid
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IdentityGrid’s Entity

c l a s s IdentityGridEntity
{

...

i n t level () const
{

r e tu rn hostEntity_ ->level ();
}

...

HostGridEntityPointer hostEntity_;

...

const GridImp* identityGrid_;

mutable MakeableInterfaceObject <Geometry > *geo_;
mutable MakeableInterfaceObject <Geometry > *geoInFather_;

};
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IdentityGrid’s Iterators

c l a s s IdentityGridEntityPointer
{

...

const GridImp* identityGrid_;

mutable IdentityGridMakeableEntity virtualEntity_;
};

c l a s s IdentityGridLeafIterator
: pub l i c IdentityGridEntityPointer
{

...

HostGridLeafIterator hostGridLeafIterator_;
HostGridLeafIterator hostGridLeafEndIterator_;

};
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IdGrid’s Entity

c l a s s IdGridEntity
{

...

const HostEntity *hostEntity_;
mutable Geometry geo_;

};

c l a s s IdGridEntity
{

...

const HostEntity *hostEntity_;
mutable Geometry geo_;

};
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IdGrid’s EntityPointer

c l a s s IdGridEntityPointer
{

...

operato r const EntityPointerImp & () const
{

r e tu rn r e i n t e r p r e t c a s t < const EntityPointerImp & >( * t h i s );
}

...

mutable Entity entity_;

HostIterator hostIterator_;
};
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IdGrid’s Iterators

c l a s s IdGridIterator
: pub l i c IdGridEntityPointer
{

us ing IdGridEntityPointer :: hostIterator_;
us ing IdGridEntityPointer :: releaseEntity ();

...

vo id increment ()
{

++ hostIterator_;
releaseEntity ();

}
};
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IdGrid vs. IdentityGrid: Performance
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Summary

Avoiding some performance pitfalls:

I do not copy entity pointers unless required

I do not multiply obtain references like entity() or
geometry()

I do not use Intersection::inside, you already have
that entity

I use LocalIdSet over GlobalIdSet, if possible

Other performance considerations:

I choose a grid suited for your problem

I meta grids currently add (considerable) overhead
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Finally...

Thank you for your attention!
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