
Albert-Ludwigs-Universität Freiburg

Performance Pitfalls in the DUNE Grid Interface

Martin Nolte

October 7, 2010



Is Performance Really Relevant?

In the scientific commumity, scalability of algorithms is most
important. Why care for performance of the implementation?

I Computation easily takes days. Is waiting 10 days instead
of 1 relevant?

I Computation time can be compensated by more machines.
Can you spend 10 times as many computers?

I Why debug parallel code when you can still speed up the
serial one?

Martin Nolte Performance Pitfalls in the DUNE Grid Interface October 7, 2010 2 / 22



Is the EntityPointer really a pointer?

The following code compiles fine but may cause segmentation
faults:

const Entity &entity = *intersection.outside ();
cout << entity.geometry (). center () << endl;

Why?

Most grid implementations create entities only on demand, i.e.,
they exist as long as the EntityPointer exists.

⇒ Copying an EntityPointer might mean copying the entity.

Martin Nolte Performance Pitfalls in the DUNE Grid Interface October 7, 2010 3 / 22



Is the EntityPointer really a pointer?

The following code compiles fine but may cause segmentation
faults:

const Entity &entity = *intersection.outside ();
cout << entity.geometry (). center () << endl;

Why?

Most grid implementations create entities only on demand, i.e.,
they exist as long as the EntityPointer exists.

⇒ Copying an EntityPointer might mean copying the entity.

Martin Nolte Performance Pitfalls in the DUNE Grid Interface October 7, 2010 3 / 22



Example 1: Safe but Slow

Let’s have a look at the following code:

const Intersection &is = *intersectionIterator;
const i n t n = is.outside()->geometry (). corners ();
f o r ( i n t i = 0; i < n; ++i )
{

cout << is.outside()->geometry (). corner( i )
<< endl;

}

In the worst case, the entity is created n + 1 times.

Martin Nolte Performance Pitfalls in the DUNE Grid Interface October 7, 2010 4 / 22



Example 1: A bit Better

Let’s have a look at the following code:

const Intersection &is = *intersectionIterator;
const EntityPointer ep = is.outside ();
const i n t n = ep ->geometry (). corners ();
f o r ( i n t i = 0; i < n; ++i )

cout << ep ->geometry (). corner( i ) << endl;

Now the EntityPointer is created only once. Still, the entity
might be reinitialized with each dereferencing.

Martin Nolte Performance Pitfalls in the DUNE Grid Interface October 7, 2010 5 / 22



Example 1: Better, but not Perfect

Let’s have a look at the following code:

const Intersection &is = *intersectionIterator;
const EntityPointer ep = is.outside ();
const Entity &e = *ep;
const i n t n = e.geometry (). corners ();
f o r ( i n t i = 0; i < n; ++i )

cout << e.geometry (). corner( i ) << endl;

Now, the EntityPointer and Entity are created at most
once. But what about the geometry?

Martin Nolte Performance Pitfalls in the DUNE Grid Interface October 7, 2010 6 / 22



Example 1: Fast but Ugly

Let’s have a look at the following code:

const Intersection &is = *intersectionIterator;
const EntityPointer ep = is.outside ();
const Entity &e = *ep;
const Geometry &geo = e.geometry ();
const i n t n = geo.corners ();
f o r ( i n t i = 0; i < n; ++i )

cout << geo.corner( i ) << endl;

Now, EntityPointer, Entity and Geometry are created at
most once. We cannot do faster, but the code looks quite ugly
now.

Martin Nolte Performance Pitfalls in the DUNE Grid Interface October 7, 2010 7 / 22



Example 1: That’s It

Let’s have a look at the following code:

const Intersection &is = *intersectionIterator;
const EntityPointer ep = is.outside ();
const Geometry &geo = ep->geometry ();
const i n t n = geo.corners ();
f o r ( i n t i = 0; i < n; ++i )

cout << geo.corner( i ) << endl;

Now, EntityPointer, Entity and Geometry are still created
at most once. We don’t need to store the entity reference.

Martin Nolte Performance Pitfalls in the DUNE Grid Interface October 7, 2010 8 / 22



Avoid Using Intersection::inside

Intersection::inside creates a new EntityPointer to the inside
entity.
But the intersection is obtained through code like

f o r ( IIt iit = gridView.ibegin( e ); ... )
{

EntityPointer inside = iit ->inside ();

...
}

In this case inside is just an EntityPointer to e.

Martin Nolte Performance Pitfalls in the DUNE Grid Interface October 7, 2010 9 / 22



GlobalIdSet vs. LocalIdSet

I Id sets are artificial DUNE structures to uniquely identify
an entity.

I Grid implementations associate ids each entity, if
requested (⇒ possible extra memory consumption).

I Global ids are unique over all processes (⇒ they are
communicated during load balancing).

I A local id might be something available (e.g., Element∗).

⇒ Use the GlobalIdSet only if needed. Once requested, the
grid may not delete it.

Martin Nolte Performance Pitfalls in the DUNE Grid Interface October 7, 2010 10 / 22



GlobalIdSet vs. LocalIdSet

I Id sets are artificial DUNE structures to uniquely identify
an entity.

I Grid implementations associate ids each entity, if
requested (⇒ possible extra memory consumption).

I Global ids are unique over all processes (⇒ they are
communicated during load balancing).

I A local id might be something available (e.g., Element∗).

⇒ Use the GlobalIdSet only if needed. Once requested, the
grid may not delete it.

Martin Nolte Performance Pitfalls in the DUNE Grid Interface October 7, 2010 10 / 22



Avoiding Strict-Aliasing Warnings

Can I use -fstrictaliasing with DUNE?

Many of these strict aliasing warnings origin from the following
situation:

vo id f ( const EntityPointer &ep );

Callling f( it ) for an iterator it will result a strict aliasing
warning in gcc 4.4 and above.

This problem can be avoided using either of following two
variants of f:

template < c l a s s G, c l a s s I >
vo id f ( const EntityPointer < G, I > &ep );

vo id f ( const Entity &e );

In the development head of DUNE (not in the 2.0 release),
such methods have been replaced by one of these variants.

Martin Nolte Performance Pitfalls in the DUNE Grid Interface October 7, 2010 11 / 22



Avoiding Strict-Aliasing Warnings

Can I use -fstrictaliasing with DUNE?

Many of these strict aliasing warnings origin from the following
situation:

vo id f ( const EntityPointer &ep );

Callling f( it ) for an iterator it will result a strict aliasing
warning in gcc 4.4 and above.

This problem can be avoided using either of following two
variants of f:

template < c l a s s G, c l a s s I >
vo id f ( const EntityPointer < G, I > &ep );

vo id f ( const Entity &e );

In the development head of DUNE (not in the 2.0 release),
such methods have been replaced by one of these variants.
Martin Nolte Performance Pitfalls in the DUNE Grid Interface October 7, 2010 11 / 22



SPGrid

SPGrid is a fast implementation of a structured, parallel grid
with static load balancing (at creation time).

Features (in comparison to YaspGrid and SGrid):

SGrid YaspGrid SPGrid
supports entities of codim 0, . . . , d 0, d 0, . . . , d
can communicate on codim — 0, d 0, . . . , d
superentity iterators for codim — — 0, . . . , d
supported domains

∏
[ai , bi ]

∏
[0, bi ]

∏
[ai , bi ]

supports periodicity no no yes
supports anisotropic refinement no no yes
supported world dimensions ≥ d d d

“SGrid is slow because it implements the complete interface.”

Martin Nolte Performance Pitfalls in the DUNE Grid Interface October 7, 2010 12 / 22



Performance Issues of SPGrid

I memory consumption is independent of number of
elements

I values for jacobian, jacobianInverseTransposed,
integrationElement and volume stored only once for
each grid level

I minimal size of on-the-fly objects like Entity, Geometry,
Intersection, etc.

I all local geometries are stored on the grid

I data of Entity stored within Geometry

Martin Nolte Performance Pitfalls in the DUNE Grid Interface October 7, 2010 13 / 22



Finite Volumes on a Structured Grid

 10

 100

 1000

 10000

 100000

884736 2097152 4096000

C
PU

 T
im

e 
in

 S
ec

on
ds

Number of Hexahedra

SPGrid

33

104

271

YaspGrid

61

190

477

SGrid

295

923

2231

ALUCubeGrid

281

871

2192

UGGrid

3422

10548

26001

Martin Nolte Performance Pitfalls in the DUNE Grid Interface October 7, 2010 14 / 22



IdentityGrid’s Entity

c l a s s IdentityGridEntity
{

...

i n t level () const
{

r e tu rn hostEntity_ ->level ();
}

...

HostGridEntityPointer hostEntity_;

...

const GridImp* identityGrid_;

mutable MakeableInterfaceObject <Geometry > *geo_;
mutable MakeableInterfaceObject <Geometry > *geoInFather_;

};

Martin Nolte Performance Pitfalls in the DUNE Grid Interface October 7, 2010 15 / 22



IdentityGrid’s Iterators

c l a s s IdentityGridEntityPointer
{

...

const GridImp* identityGrid_;

mutable IdentityGridMakeableEntity virtualEntity_;
};

c l a s s IdentityGridLeafIterator
: pub l i c IdentityGridEntityPointer
{

...

HostGridLeafIterator hostGridLeafIterator_;
HostGridLeafIterator hostGridLeafEndIterator_;

};

Martin Nolte Performance Pitfalls in the DUNE Grid Interface October 7, 2010 16 / 22



IdGrid’s Entity

c l a s s IdGridEntity
{

...

const HostEntity *hostEntity_;
mutable Geometry geo_;

};

c l a s s IdGridEntity
{

...

const HostEntity *hostEntity_;
mutable Geometry geo_;

};

Martin Nolte Performance Pitfalls in the DUNE Grid Interface October 7, 2010 17 / 22



IdGrid’s EntityPointer

c l a s s IdGridEntityPointer
{

...

operato r const EntityPointerImp & () const
{

r e tu rn r e i n t e r p r e t c a s t < const EntityPointerImp & >( * t h i s );
}

...

mutable Entity entity_;

HostIterator hostIterator_;
};

Martin Nolte Performance Pitfalls in the DUNE Grid Interface October 7, 2010 18 / 22



IdGrid’s Iterators

c l a s s IdGridIterator
: pub l i c IdGridEntityPointer
{

us ing IdGridEntityPointer :: hostIterator_;
us ing IdGridEntityPointer :: releaseEntity ();

...

vo id increment ()
{

++ hostIterator_;
releaseEntity ();

}
};

Martin Nolte Performance Pitfalls in the DUNE Grid Interface October 7, 2010 19 / 22



IdGrid vs. IdentityGrid: Performance

100%

200%

300%

400%

500%

600%

884736 2097152 4096000

R
at

io
 o

f C
PU

 T
im

e 
be

tw
ee

n 
M

et
ag

rid
 a

nd
 H

os
tG

rid

Number of Hexahedra

IdGrid<SPGrid>

131 131 124

IdGrid<YaspGrid>

170 173 170

IdGrid<ALUCubeGrid>

104 101 108

IdentityGrid<SPGrid>

460
478

443

IdentityGrid<YaspGrid>

440 439 430

IdentityGrid<ALUCubeGrid>

175 174 174

Martin Nolte Performance Pitfalls in the DUNE Grid Interface October 7, 2010 20 / 22



Summary

Avoiding some performance pitfalls:

I do not copy entity pointers unless required

I do not multiply obtain references like entity() or
geometry()

I do not use Intersection::inside, you already have
that entity

I use LocalIdSet over GlobalIdSet, if possible

Other performance considerations:

I choose a grid suited for your problem

I meta grids currently add (considerable) overhead

Martin Nolte Performance Pitfalls in the DUNE Grid Interface October 7, 2010 21 / 22



Summary

Avoiding some performance pitfalls:

I do not copy entity pointers unless required

I do not multiply obtain references like entity() or
geometry()

I do not use Intersection::inside, you already have
that entity

I use LocalIdSet over GlobalIdSet, if possible

Other performance considerations:

I choose a grid suited for your problem

I meta grids currently add (considerable) overhead

Martin Nolte Performance Pitfalls in the DUNE Grid Interface October 7, 2010 21 / 22



Finally...

Thank you for your attention!

Martin Nolte Performance Pitfalls in the DUNE Grid Interface October 7, 2010 22 / 22


