

Universität Stuttgart Germany

50

Upscaling of Porous Media Flow with DuMu^x and dune-multidomaingrid

Bernd Flemisch, Markus Wolff

Dune User Meeting, 6.-8.10.10, Stuttgart

Outline

• DuMu^x

- Tensorial Permeabilities
- Upscaling Concept
- Implementation Concept
- Summary

Outline

- DuMu^x
 - Tensorial Permeabilities
 - Upscaling Concept
 - Implementation Concept
 - Summary

DuMu^x

Dune for Multi-{phase, component, scale, physics, ...} Flow in Porous Media

Used / developed by:

- Katherina Baber
- Melanie Darcis
- Karin Erbertseder
- Benjamin Faigle
- Bernd Flemisch
- Andreas Lauser
- Klaus Mosthaf
- Philipp Nuske
- Sergey Oladyshkin
- Nicolas Schwenck
- Alex Tatomir
- Lena Walter
- Markus Wolff
- Yufei Cao
- Marc Schlienger
- Leopold Stadler

dumux.org

- 1/2007: started
- ~4300: svn revision
- ~50,000 lines (stable)
- 1.7.09: release 1.0
- soon: next release

Coupled Fully Implicit Models

- Implicit Euler time discretization
- Vertex centered FV (box) space discretization
 - Newton method
- Models:
 - One phase: 1p, 1p2c
 - Two phases: 2p, 2pni, 2p2c, 2p2cni, (2p3c, 2pia, 2p2cia)
 - (MpNc)
 - (Double continuum, MINC, DFN)
 - (Richards equation)

Decoupled Semi-implicit Models

- Standard and phase pressure fractional flow formulation
- Twophase(-twocomponent-nonisothermal), (3p3c in progress)
- (Multiscale approaches for pressure and transport equations)
- (Multiphysics approaches like 2p2c 1p2c coupling)
- Transport equation:
 - Cell centered FV, implicit and explicit
 - Vertex centered FV, implicit
 - (Characteristic method)
 - (Operator splitting framework)
- Pressure equation:
 - Cell centered FV (with MPFA (2D))
 - Mimetic FD (2D)
 - (P1 FE with post-processed conservative fluxes)

(Other Models and Capabilities)

- Parker-Lenhard type hysteresis
- Brinkman equation: coupling (single-phase) free flow with porous media flow
- Coupling of free flow and porous media flow:
 - Use of dune-multidomain
 - 2c free flow and 2p2c porous media flow
- Matrix deformation:
 - linear elasticity model implemented
 - Coupling to flow via dune-multidomain
- Fractured media:
 - Nonmatching (d-1) and d-dimensional grids
 - X-FEM approach using dune-multidomain

50

- DuMu^x
- Tensorial Permeabilities
- Upscaling Concept
- Implementation Concept
- Summary

SPZ

Necessity of coarse-scale full tensor coefficients

Necessity of coarse-scale full tensor coefficients

Necessity of coarse-scale full tensor coefficients

Upscaled Equations

Averaged equations

$$\frac{\partial(\phi^* S_{\mathsf{W}}^*)}{\partial t} + \nabla \cdot \langle \mathbf{v}_{\mathsf{W}} \rangle = 0 \qquad \langle \mathbf{v}_{\mathsf{W}} \rangle = -\frac{\mathbf{K}^* \mathbf{K}_{r_{\mathsf{W}}}^*}{\mu_{\mathsf{W}}} \cdot \left[\nabla \langle p_{\mathsf{W}} \rangle_{\mathsf{W}} - \varrho_{\mathsf{W}} g \nabla z \right]$$

$$\frac{\partial(\phi^* S_{\mathsf{N}}^*)}{\partial t} + \nabla \cdot \langle \mathbf{v}_{\mathsf{N}} \rangle = 0 \qquad \langle \mathbf{v}_{\mathsf{N}} \rangle = -\frac{\mathbf{K}^* \mathbf{K}_{r_{\mathsf{N}}}^*}{\mu_{\mathsf{N}}} \cdot \left[\nabla \langle p_{\mathsf{N}} \rangle_{\mathsf{N}} - \varrho_{\mathsf{N}} g \nabla z \right]$$

$$S_{\mathsf{N}}^* = \frac{V_{\mathsf{N}_{\mathsf{mobile}}}}{V_{\mathsf{pores}} - V_{\mathsf{immobile}}} \qquad S_{\mathsf{W}}^* = \frac{V_{\mathsf{W}_{\mathsf{mobile}}}}{V_{\mathsf{pores}} - V_{\mathsf{immobile}}}$$

$$p_{\mathsf{C}}^* = \langle p_{\mathsf{N}} \rangle_{\mathsf{N}} - \langle p_{\mathsf{W}} \rangle_{\mathsf{W}} \qquad S_{\mathsf{W}}^* + S_{\mathsf{N}}^* = 1 \qquad \langle \Psi_{\alpha} \rangle_{\alpha} = \frac{1}{V_{\alpha}} \int_{V_{\alpha}} \Psi_{\alpha} dV_{\alpha}$$

Choice of Discretization

Discretization must be able to treat the tensor coefficients!

www.simtech.uni-stuttgart.de

Choice of Discretization

Discretization must be able to treat the tensor coefficients!

www.simtech.uni-stuttgart.de

Choice of Discretization

Discretization must be able to treat the tensor coefficients!

Two-Point Flux Approximation (TPFA) NOT sufficient!

Choice of Discretization

Discretization must be able to treat the tensor coefficients!

- Two-Point Flux Approximation (TPFA) NOT sufficient!
 - → Standard finite volume methods cannot be used

Choice of Discretization

Discretization must be able to treat the tensor coefficients!

- Two-Point Flux Approximation (TPFA) NOT sufficient!
 - → Standard finite volume methods cannot be used
- Alternatives:
 - Mixed finite elements
 - Mimetic finite differences
 - Multi-Point-Flux-Approximation (MPFA)

- DuMu^x
- Tensorial Permeabilities
- Upscaling Concept
- Implementation Concept
- Summary

Germany

Upscaling Concept

Intrinsic permeability upscaling

Relative permeability upscaling

- Use pressure field of global calculations for boundary conditions
- Calculate velocity field and solve system of eq.

$$\begin{pmatrix} \Psi_{\alpha,x}^{x} & \Psi_{\alpha,y}^{x} & 0 & 0\\ 0 & 0 & \Psi_{\alpha,x}^{x} & \Psi_{\alpha,y}^{x}\\ \Psi_{\alpha,x}^{y} & \Psi_{\alpha,y}^{y} & 0 & 0\\ 0 & 0 & \Psi_{\alpha,x}^{y} & \Psi_{\alpha,y}^{y} \end{pmatrix} \begin{pmatrix} K_{\text{tot}_{xx\alpha}}^{*}\\ K_{\text{tot}_{xy\alpha}}^{*}\\ K_{\text{tot}_{yx\alpha}}^{*}\\ K_{\text{tot}_{yy\alpha}}^{*} \end{pmatrix} = - \begin{pmatrix} \langle v_{\alpha_{x}} \rangle_{\alpha}^{x}\\ \langle v_{\alpha_{y}} \rangle_{\alpha}^{x}\\ \langle v_{\alpha_{x}} \rangle_{\alpha}^{y}\\ \langle v_{\alpha_{y}} \rangle_{\alpha}^{y} \end{pmatrix}$$

Relative permeability upscaling

$$\begin{pmatrix} \Psi_{\alpha,x}^{x} & \Psi_{\alpha,y}^{x} & 0 & 0\\ 0 & 0 & \Psi_{\alpha,x}^{x} & \Psi_{\alpha,y}^{x} \\ \Psi_{\alpha,x}^{y} & \Psi_{\alpha,y}^{y} & 0 & 0\\ 0 & 0 & \Psi_{\alpha,x}^{y} & \Psi_{\alpha,y}^{y} \end{pmatrix} \begin{pmatrix} K_{\text{tot}_{xx\alpha}}^{*} \\ K_{\text{tot}_{xy\alpha}}^{*} \\ K_{\text{tot}_{yx\alpha}}^{*} \\ K_{\text{tot}_{yy\alpha}}^{*} \end{pmatrix} = - \begin{pmatrix} \langle v_{\alpha_{x}} \rangle_{\alpha}^{x} \\ \langle v_{\alpha_{y}} \rangle_{\alpha}^{x} \\ \langle v_{\alpha_{x}} \rangle_{\alpha}^{y} \\ \langle v_{\alpha_{y}} \rangle_{\alpha}^{y} \end{pmatrix}$$

$$\Psi_{\alpha,x}^{x} = \frac{1}{\mu_{\alpha}} \left\langle \frac{\partial p_{\alpha}}{\partial x} \right\rangle_{\alpha}^{x} + \rho_{\alpha} g \nabla z \qquad \Psi_{\alpha,y}^{x} = \frac{1}{\mu_{\alpha}} \left\langle \frac{\partial p_{\alpha}}{\partial y} \right\rangle_{\alpha}^{x} + \rho_{\alpha} g \nabla z$$

$$\Psi^{y}_{\alpha,x} = \frac{1}{\mu_{\alpha}} \left\langle \frac{\partial p_{\alpha}}{\partial x} \right\rangle^{y}_{\alpha} + \rho_{\alpha} g \nabla z \qquad \Psi^{y}_{\alpha,y} = \frac{1}{\mu_{\alpha}} \left\langle \frac{\partial p_{\alpha}}{\partial y} \right\rangle^{y}_{\alpha} + \rho_{\alpha} g \nabla z$$

 $\mathbf{K}_r^* = \mathbf{K}_{\mathsf{tot}}^* \mathbf{K}^{*^{-1}}$

- DuMu^x
- Tensorial Permeabilities
- Upscaling Concept
- Implementation Concept
- Summary

Implementation in DuMu^x

Aim: General framework for use/combination of different local(-

global) methods implemented in DuMux.

Universität Stuttgart Germany

Water saturation

SZ

Universität Stuttgart Germany

Grid Mapping

> dune-multidomaingrid

Grid Mapping Ingredient: SubdomainGenerator

```
template<class TypeTag>
```

void SubdomainGenerator<TypeTag>::createSubgridsOneCell(Scalar radiu

```
gridMultiScale_.startSubDomainMarking();
```

```
for (ElementIteratorFine eItFine = gridViewFine_.template begin<0>
{
    int subdomainIndex = ...;
```

```
gridMultiScale_.addToSubDomain(subDomainIndex, *eItFine);
}
```

```
gridMultiScale_.preUpdateSubDomains();
gridMultiScale_.updateSubDomains();
gridMultiScale_.postUpdateSubDomains();
```

{

}

Universität Stuttgart Germany

Control System

Adaptive

Germany

www.simtech.uni-stuttgart.de

Choice of Local Model(s)

Ingredient: Property System

Definition of default local problem type:

```
SET_TYPE_PROP(MultiScale,
LocalMultiScaleBaseProblem,
Diffusion1P<TypeTag>);
```

• Can be overwritten at any higher level:

```
SET_TYPE_PROP(MyProblem,
LocalMultiScaleBaseProblem,
IMPET<TypeTag>);
```

• Easy typedef extraction:

template<class TypeTag>

Choice of Upscaling Method(s) logarithm of permeability 8 00 -9.00 Intrinsic -10.0 permeability (fine scale) -11.0 Global Model Grid -12.0 Mapping -12.5 Choice of Control System Methods of parameter Choice of upscaling Local Model(s) Permeabilities

- Transmissibilities
- Capillary pressure?

Effective permeability x- and y-direction (coarse scale)

First results: 2-phase flow without p_c and gravity

- DuMu^x
- Tensorial Permeabilities
- Upscaling Concept
- Implementation Concept
- Summary

- Especially for upscaling, tensorial permeabilities are important.
- Discretizations have to be able to treat tensorial permeabilities.
- Upscaling concept based on calculation of effective parameters.
- Intrinsic permeability upscaling is well understood.
- Relative permeability and capillary pressure upscaling not at all.
- Implementation based on dune-multidomaingrid.
- Flexible choice of local and global model and upscaling method.
- Parallelized preprocessing.

Universität Stuttgart Germany

Thank you!

TPFA:

TPFA vs. MPFA

Gradient Cells 4 3 Fluxes 2

• Mobility:
$$\Lambda_{34} = \frac{K_{r_{34}}}{\mu_{34}} = \Lambda_{34}^{(upw)}$$

• Flux: $F_{34} = (\Lambda_{34} \mathbf{K}_{34} grad \Phi_{34}) \mathbf{n}_{34} A_{34}$ $= (\Lambda_{XX_{34}} K_{XX_{34}} + \Lambda_{XY_{34}} K_{YX_{34}}) \Delta \Phi_{34} A_{34}$

TPFA vs. MPFA

Potential in a cell is assumed to be linear:

$$\Phi_j(\mathbf{x}) = \nabla \Phi_j \cdot (\mathbf{x} - \mathbf{x}_{j,0}) + \Phi_{j,0}$$

Use this approximation and the continuity points (a, d) (2-d):

$$\underbrace{\begin{pmatrix} (\mathbf{x}_{1,a} - \mathbf{x}_{1,0})^T \\ (\mathbf{x}_{1,d} - \mathbf{x}_{1,0})^T \end{pmatrix}}_{\mathbf{X}} \nabla \Phi_1 = \begin{pmatrix} \Phi_{1,a} - \Phi_{1,0} \\ \Phi_{1,d} - \Phi_{1,0} \end{pmatrix}$$

After some reformulation the gradient can be approximated as:

$$\nabla \Phi_1 = \frac{1}{V_t} \left(\nu_{12} (\Phi_{1,a} - \Phi_{1,0}) + \nu_{14} (\Phi_{1,d} - \Phi_{1,0}) \right)$$
$$\mathbf{X}^{-1} = \frac{1}{V_t} [\nu_{12}, \nu_{14}]$$

Germany

Universität Stuttgart

LH²

MPFA-O:

TPFA vs. MPFA

information

• G_1 includes K, Λ and geometric

Universität Stuttgart Germany

$$\mathbf{G}_{1} = \frac{1}{V_{t}} \begin{pmatrix} A_{12} \mathbf{n}_{12}^{\mathsf{T}} \boldsymbol{\Lambda}_{1} \mathbf{K}_{1} \boldsymbol{\nu}_{12} & A_{12} \mathbf{n}_{12}^{\mathsf{T}} \boldsymbol{\Lambda}_{1} \mathbf{K}_{1} \boldsymbol{\nu}_{14} \\ \\ A_{14} \mathbf{n}_{14}^{\mathsf{T}} \boldsymbol{\Lambda}_{2} \mathbf{K}_{2} \boldsymbol{\nu}_{12} & A_{14} \mathbf{n}_{14}^{\mathsf{T}} \boldsymbol{\Lambda}_{2} \mathbf{K}_{2} \boldsymbol{\nu}_{14} \end{pmatrix}$$

 $\nu_{12} = \frac{(\mathbf{x}_a - \mathbf{x}_1)}{|(\mathbf{x}_a - \mathbf{x}_1)|} A_{14}$

Structured grid

$$\mathbf{G}_{1} = \frac{1}{V_{t}} \begin{pmatrix} A_{12} \mathbf{n}_{12}^{\mathsf{T}} \boldsymbol{\Lambda}_{1} \mathbf{K}_{1} A_{14} \mathbf{n}_{12} & A_{12} \mathbf{n}_{12}^{\mathsf{T}} \boldsymbol{\Lambda}_{1} \mathbf{K}_{1} A_{12} \mathbf{n}_{14} \\ A_{14} \mathbf{n}_{14}^{\mathsf{T}} \boldsymbol{\Lambda}_{2} \mathbf{K}_{2} A_{14} \mathbf{n}_{12} & A_{14} \mathbf{n}_{14}^{\mathsf{T}} \boldsymbol{\Lambda}_{2} \mathbf{K}_{2} A_{12} \mathbf{n}_{14} \end{pmatrix}$$

SP

MPFA-O:

• Fluxes:
$$f_{12} = -\frac{1}{V_t} A_{12} A_{14} (\Lambda_{XX} K_{XX} + \Lambda_{XY} K_{YX}) (\Phi_a - \Phi_1) - \frac{1}{V_t} A_{12} A_{12} (\Lambda_{XX} K_{XY} + \Lambda_{XY} K_{YY}) (\Phi_d - \Phi_1)$$

 Solve the system of equations arising from a flux balance to get the Transmissibility matrix T:

202

Universität Stuttgart Germany

L-Method

O-Method

www.simtech.uni-stuttgart.de

TPFA vs. MPFA

TPFA

only for structured grids (CCFV)

 Accurate for unstructured grids (CCFV)

TPFA vs. MPFA

TPFA

- only for structured grids (CCFV)
- Face flux with information of the
 - 2 neighbor cells

MPFA-O

 Accurate for unstructured grids (CCFV)

LH²

Universität Stuttgart

Germany

Face flux with information of 6
 (2-D) surrounding cells

TPFA

•	•	•
•	•	•
•	•	•

MPFA-O

TPFA vs. MPFA

TPFA

- only for structured grids (CCFV)
- Face flux with information of the 2 neighbor cells
- 5-point stencil → problem if flux
 is not aligned with the principal
 grid axes

MPFA-O

 Accurate for unstructured grids (CCFV)

Universität Stuttgart

Germany

- Face flux with information of 6
 (2-D) surrounding cells
- 9-point stencil → diagonal effects accounted for

TPFA

•	•	•
•	•	•
•	•	•

MPFA-O

•	•	●
•	•	•
•	•	•

TPFA vs. MPFA

TPFA

- only for structured grids (CCFV)
- Face flux with information of the 2 neighbor cells
- 5-point stencil → problem if flux
 is not aligned with the principal
 grid axes
- Not able to account properly for the full tensor effects

MPFA-O

 Accurate for unstructured grids (CCFV)

Universität Stuttgart

Germany

- Face flux with information of 6
 (2-D) surrounding cells
- 9-point stencil → diagonal effects accounted for
- Accounts for full tensor effects

www.simtech.uni-stuttgart.de

Small Summary

- It can be necessary to use full tensor coefficients
 - A MPFA-O method is able to treat them

We need a MPFA method for two-phase flow with capillary pressure and gravity!

Treatment of tensor coefficients with MPFA-O

- Two-phase flow formulation (Hotetit & Firoozabadi):
 - Definition of potentials:

$$\begin{split} \Phi_w &= p_{\mathsf{W}} + \rho_{\mathsf{W}} g z & \Phi_n = p_{\mathsf{n}} + \rho_{\mathsf{n}} g z \\ \Phi_c &= \Phi_{\mathsf{n}} - \Phi_{\mathsf{W}} = p_{\mathsf{C}} + (\rho_{\mathsf{n}} - \rho_{\mathsf{W}}) g z \\ \bullet \text{ Total velocity:} & \mathbf{v}_{\mathsf{t}} = \mathbf{v}_{\mathsf{W}} + \mathbf{v}_{\mathsf{n}} & \Lambda_{\mathsf{t}} = \Lambda_{\mathsf{W}} - \Lambda_{\mathsf{n}} \end{split}$$

$$\mathbf{v}_{t} = \underbrace{-\Lambda_{t} \mathbf{K} \nabla \Phi_{W}}_{\mathbf{v}_{(adv)}} \underbrace{+\Lambda_{t}^{-1} \Lambda_{n} \Lambda_{t} \nabla \Phi_{C}}_{\mathbf{v}_{(cap)}}$$

$$\Lambda_{lpha} = rac{1}{\mu_{lpha}} \mathbf{K}_{\mathsf{r}_{lpha}}$$

Pressure equation:

$$abla \cdot \mathbf{v}_{\mathsf{t}} = q_{\mathsf{t}}$$

Treatment of tensor coefficients with MPFA-O

- Discretization of the pressure equation with finite volumes and MPFA: $\int_{V} \nabla \cdot \mathbf{v}_{t} \, dV = \sum_{i} \left(F_{(adv)_{i}} + F_{(cap)_{i}} \right) = q_{t} V$
 - Total transmissibility $~T_t~$ as operator for $~A\,n\Lambda_t K\nabla$:

$$\underbrace{\mathbf{F}_{(\text{adv})_{w}} = \mathbf{T}_{t} \Phi_{w}}_{\text{advective flux}}$$

$$\underbrace{\mathbf{F}_{(\text{cap})} = \boldsymbol{\Lambda}_{t}^{-1}\boldsymbol{\Lambda}_{n}\mathbf{T}_{t}\boldsymbol{\Phi}_{\text{C}}}_{\textbf{C}}$$

capillary flux

Treatment of tensor coefficients with MPFA-O

Calculation of phase velocities:

$$\mathbf{v}_{\mathsf{W}_{i}} = \boldsymbol{\Lambda}_{\mathsf{t}_{i}}^{(\mathsf{upW})^{-1}} \boldsymbol{\Lambda}_{\mathsf{W}_{i}}^{(\mathsf{upW})} (\mathbf{T}_{\mathsf{t}} \Phi_{\mathsf{W}})_{i} \frac{\mathbf{n}_{i}}{A_{i}}$$
$$\mathbf{v}_{\mathsf{n}_{i}} = \left[\boldsymbol{\Lambda}_{\mathsf{t}_{i}}^{(\mathsf{upW})^{-1}} \boldsymbol{\Lambda}_{\mathsf{n}_{i}}^{(\mathsf{upW})} (\mathbf{T}_{\mathsf{t}} \Phi_{\mathsf{W}})_{i} + \boldsymbol{\Lambda}_{\mathsf{t}_{i}}^{-1} \boldsymbol{\Lambda}_{\mathsf{n}_{i}} \left(\mathbf{T}_{\mathsf{t}} \Phi_{(\mathsf{cap})}\right)_{i}\right] \frac{\mathbf{n}_{i}}{A_{i}}$$

Discretisation of the saturation equation with finite volumes:

$$\varphi \frac{\partial S_{\mathsf{W}}}{\partial t} V + \sum_{i} (\mathbf{v}_{\mathsf{W}} \cdot n)_{i} A_{i} = q_{i} V$$

How can tensor parameters be determined?

- Can arise from upscaling
 - Analytical methods (only simple structures)
 - Numerical methods
 - ...
- Well tested methods for intrinsic permeability upscaling available
- Tensor relative permeabilities?

www.simtech.uni-stuttgart.de

Relative permeability upscaling

Determine initial saturation distribution from capillary

Example of an upscaled relative permeability function

